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EFFECTS OF DAMPING ON STABILITY OF ELASTIC
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Abstract—A question of the correlation between stability and quasistability regions of elastic and viscoelastic
systems subjected to nonconservative forces is discussed. On the base of the method of expansion in fractional
powers of parameters the more rigorous considerations are presented than the considerations used in the earlier
papers where the semiintuitive assumptions, the arguments by analogy and the incomplete induction methods
were applied widely. In the first part of the paper a number of general statements concerning both continuous
and discrete systems are proved. It is shown that for real laws of damping a considerable part of the quasistability
region belongs in fact to instability region. From this point of view a number of papers dealing with non-
conservative stability problems (including panel flutter problems) must be reconsidered. To illustrate the general
statements, in the second part of the paper a numerical examination of stability of cantilever bar made of the
standard viscoelastic solid and subjected to follower and dead forces is presented. Some phenomena inherent
to the nonconservative viscoelastic systems are discussed.

1. INTRODUCTION

STABILITY of elastic systems subjected to nonconservative forces has been studied by
many authors beginning with Nikolai [1, 2]. A review of results in this area is given in a
book by Bolotin [3] and in papers by Herrmann [4} and Dzhanelidze [5].

One of the most important and interesting aspects of the theory is connected with
damping effects in stability problems. Ziegler [6], dealing with a double mathematical
pendulum subjected on a free end to a follower (tangential) force, has found that addition
of a small damping can reduce the value of the critical force in comparison with one found
not taking into account the damping. Bolotin [7] has investigated a dependence of critical
parameters on the ratio of partial damping coeflicients. He has proved that a reduction
of critical parameters caused by the addition of vanishing damping is absent only in a case
of equal partial coefficients. Later. effects of damping on stability of elastic systems subjected
to nonconservative forces have been studied by many authors. Some of the problems have
been discussed by Leonov and Zorii {8], Herrmann and Jong {9, 22] and Leipholz [10].
Leonov and Zorii have studied effects of friction on the stability of a cantilever bar sub-
jected to follower and dead forces and having at its end two equal masses located at some
distance from each other. Herrmann and Jong [9] studied the influence of damping in
Ziegler’s model [6]. Leipholz [10] has considered a discrete system with a diagonal damp-
Ing matrix.

Some general results related to the stability of nonconservative systems have been
obtained by Nemat-Nasser, Prasad and Herrmann [11], Nemat-Nasser and Herrmann
[12]. Expanding the characteristic determinant in integer powers of damping parameters,
authors have made some conclusions about the behaviour of characteristic exponents of
discrete systems with small damping. Their results are presented in form of theorems on
the destabilization condition due to damping. An attempt was made to extend these
results to continuous systems. This question was also discussed by Nemat-Nasser [24].
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The expansions used in papers [11, 12] become improper near the critical values of
parameters of external forces. Zhinzher [13] has applied in this case an expansion in
fractional powers of the damping parameters. Thus some general statements on the
behaviour of critical parameters of external forces when damping vanishes are obtained.

This paper is dedicated to a systematical study of damping effects on the stability of
finite-degree-of-freedom and continuous systems subjected to nonconservative forces. A
method of expansion in fractional powers of parameters is applied. This method permits
one to establish in a general form a number of resuits which have been discussed previously
only on the base of simple particular examples. Further by means of this method a set of
general statements is proved rigorously.

The paper consists of two parts. The first part deals with general problems. Generaliza-
tion and development of some results [3, 6-13] concerning to the paradoxical behaviour
of elastic systems in the presence of small damping is presented. This question is discussed
from the point of view of the Liapunov’s theory of stability. A concept of quasistability
corresponding to the doubtful case in the Liapunov’s theory and a concept of quasi-
critical load’s parameters are introduced. The not very appropriate concept of the destabiliz-
ing effect of damping is replaced by more rigorous and exact terms. In a general form an
investigation is undertaken of an equation connecting characteristic exponents, damping-
and load’s parameters. A question of the structure of an expansion of the roots of the
characteristic equation in fractional powers of the damping parameters is investigated.
General properties of critical parameters in the presence of small damping and their rela-
tions with quasicritical parameters are found. The cases of divergence instability (zero
characteristic exponents) and cases of flutter instability are considered. An example of
elastic system with multiple natural frequencies first considered by Nikolai [1,2] is dis-
cussed separately. General methods are illustrated with examples of discrete and con-
tinuous elastic systems.

The second part of the paper is dedicated to a comprehensive numerical analysis of
one special problem. As such one the stability problem of a cantilever bar subjected to
tangential and dead forces is considered. The material of the bar is supposed to be a
standard viscoelastic solid. So, damping forces are characterized by means of two constants :
it allows to include a wide diapason of variation of partial damping coefficients. The two
damping constants and two parameters of external forces form a four-dimensional space.
The stability region in this space (more exactly in correspondingly selected subspace) is
determined by the mapping of imaginary axes on the characteristic exponents’ plane.
Calculations were made by digital computer. The dependence of critical parameters on
damping parameters and on the ratio between parameters of the tangential and the dead
forces is discussed. The jump paradox of the resultant critical force discovered firstly by
Dzhanelidze [17] is also discussed. The behaviour of characteristic exponents due to varia-
tion of external forces parameter and damping parameter is investigated.

2. GENERAL CONCEPTS

The fundamental problem of the stability theory of deformable systems is the calcula-
tion of values of system parameters and (or) external condition parameters corresponding
to transition from stability to instability. These values are called critical. Most often the
values of external forces are considered as such parameters; in this case the critical forces

are discussed.
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Let us consider for example a problem characterized by a single parameter . Without
any limitation of generality, we can assume that § is varying within the limits 0 < f < o
and that the undisturbed motion is stable at § = 0. The upper limit of the values f = §,
when the undisturbed motion is stable is called critical. In the more general case of finite
number of parameters it is expedient to introduce the n-dimensional space of parameters
BysB2.. .., B, and distinguish in this space stability and instability regions. The surfaces
@By, B, ..., B,) = 0 dividing the stability and instability regions are called critical.

A general investigation method of stability of elastic systems consists of the analysis
of the set of motions neighbouring to the undisturbed one. This method connected with
the general theory of stability is called the dynamic one [3]. The linearized equations of
disturbed motion are usually applied by investigation of stability of equilibriums’ forms.
These equations describe small vibration of system near the undisturbed equilibrium. So
this method is called also small vibrations’ method [1, 2].

The small vibration method is analogous to the well known method of “‘equations aux
variations” in classical stability theory of Liapunov—Poincaré. In this theory theorems on
the conditions under which the linearized equations give the comprehensive solution of
the Liapunov’s stability problem are proved rigorously. The generalization of the
Liapunov’s theory to continuous systems is based on the consideration of solutions’
closeness in some metric functional spaces. Up to now all rigorously proved results in this
field concerned potential systems only [15, 16]. Nevertheless with some restrictions we can
expect that a decaying character of all possible motions of the linearized system would
provide asymptotic stability of nonlinear system in some properly chosen functional
space. This statement turns out to be true in particular for elastic and viscoelastic systems
of finite dimension. In this paper we shall assume this assertion as a postulate.

Let us consider the problem of the stability of equilibrium when the elastic system is
subjected to nonconservative forces depending on position and to dissipative forces. The
linearized equations of motion of the elastic system are satisfied, if the displacement vector
u is chosen in the form

u=q@e" 2.1)

Here ¢ is the vector defining the vibration mode, t—time, s— characteristic exponent.
The vector ¢ is to be determined from the following nonselfadjoint boundary value
problem [3]:

[As*+C +eD(s)+ fBlp = 0. (2.2)

In the operator equation (2.2) A and C are positive selfadjoint linear operators in some
Hilbert’s space (gradients of kinetic and potential energy of elastic system respectively),
D(s) is a positive operator characterizing damping forces, B is a nonselfadjoint linear
operator in the same space, characterizing nonconservative forces. In the general case the
operator of nonconservative forces depends on the characteristic exponent s. When the
material is viscoelastic, the operator C depends on s too. The dependence of the operators
D and B on the parameters ¢ and f§ can be more complicated, but the operators will be
zero operators when ¢ and f vanish. The specific form of the operators is determined by
the linearized vibration’s equations and by the boundary conditions.

The operator equation (2.2) corresponds to an eigenvalue problem with three para-
meters: the characteristic exponent s, the load parameter f and the damping parameter ¢.
When 8 = Oall the characteristic exponents are in the left half-plane of the complex variable.
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It is because the operators A, C and D are positive. All the motions (2.1) of the linearized
system are decaying in time. Analogous to the classical stability theory this will be qualified
as asymptotic stability. When the parameter § varies continuously, the characteristic
exponents vary continuously too. At some value § at least one of the exponents will be
imaginary. When parameter f increases, the characteristic exponents with positive real
part appear and consequently the instability occurs (Fig. la). The critical value Py is
determined from condition that at # > f§, among the characteristic exponents s at least
one exponent with a positive real part will appear. When the transition to the right half-
plane through the value s = 0 takes place, so instability is unvibrational. In other cases
the vibrational instability takes place. In aeroelasticity problems one speaks of divergence
and flutter, respectively.

When the dissipative forces are not considered we have instead of equation (2.2) an
operator equation

[As*+ C + BBlp = 0. (2.3)
(a) Ims (b) Ims (c) Ims
S, 52 f
8-, /
BB d Lim 8.,
5, J €0
Sy
Res Res Res
o] o] 0]
FiG. 1. Behaviour of the characteristic exponents on the complex plane.

If § = O the boundary value problem (2.3) is selfadjoint. All the eigenvalues s are negative.
Hence all the characteristic exponents are purely imaginary. Let the parameter § increase
monotonously. At some value B = B, one or several couples of exponents become mul-
tiple. When the parameter f increases further the exponents can become complex. Thus
the characteristic exponents with positive real parts appear (Fig. 1.b).

In papers dealing with stability of elastic systems the presence of characteristic expo-
nents on the imaginary axis is qualified usually as stability, and the value f§, as a critical
one. In other words, stability is interpreted as a bounded character of motions of the
linearized system, near equilibrium. This is analogous to the doubtful (critical) case in
Liapunov’s theory, when “equations of variations” do not answer the question about
stability. Thus there is no sufficient reason for application of the small vibration method
in this version. Even an analogy with the stability theory of discrete systems does not hold.

Analogous to the classical stability theory the case of purely imaginary characteristic
exponents is to be qualified as a doubtful one. When the external forces are potential, an
application of direct Liapunov’s method in some metric spaces yields a rigorous proof of
stability at § < f, [15, 16). In this case an introduction of arbitrary small (but complete)
dissipation displaces all the characteristic exponents from the imaginary axis to the left
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halfplane. If the external forces are nonconservative, the addition of the dissipative forces
with complete dissipation eliminates the critical case too. But it appears [6, 7,9, 22] that,
generally, only a part of the segment 0, f, belongs to the stability region and that the
vanishing of the dissipation does not imply 8, — j, (Fig. lc).

In previous papers dealing with the damping effects on stability of nonconservative
systems the inequality f, < ﬁ* has been interpreted as a destabilization phenomenon
caused by damping. But it seems, that it would be more correct to speak not of destabiliza-
tion but of false conclusions based on the interpretation of the critical case as a stable one.
The ““destabilization paradoxes” are consequences of noncritical application of the small
vibrations’ method. We shall show further below that solutions obtained without a con-
sideration of damping, retain some sense. It is expedient to introduce a terminology,
providing an appropriate place for these solutions. Let us call quasistability a case, when
all the characteristic exponents are on the imaginary axis. Let us call quasicritical such a
value of B, that as 8 > J, at least one exponent comes to the right halfplane. Using this
terminology, we can say that in papers discussing stability without considerations of
damping, in fact only the quasicritical parameters have been determined. A question
appears: what is the correlation between the critical and quasicritical values? In the real
structures the damping is sufficiently small usually. Hence another question appears: how
the critical values behave, when parameters of dissipation approach to zero? These ques-
tions will be discussed in the general form applicable both for discrete and continuous
systems.

3. EXPANSION OF CHARACTERISTIC EXPONENTS IN FRACTIONAL
POWERS OF PARAMETERS

Let the characteristic equation of the eigenvalue problem (2.2) be
F(s,es, ) = 0. (3.1

Setting £ = 0 we obtain a characteristic equation of the eigenvalue problem (2.3). At ¢ = 0
and B = f, the equation (3.1) has n-multiple root s = s,. Hence

F(s3.0,80 =0, 0*F(s},0,B,)/0s* =0 (k <n), & F(s2,0,f,)/05" # 0.

The quasicritical value [?* for the undamped elastic system corresponds to the junction
of n couples of the characteristic exponents. The left part of the equation (3.1) is an ana-
lytical function. At arbitrary fixed § this equation determines inexplicit function s(e).
According to the preparative theorem of Weierstrass [18], this equation at 8 = ﬁ* and
in the neighbourhood of the point s = s, ¢ = 0 is equivalent to an equation of power n
for s—s,. Coefficients of the last equation are analytic functions of . In the neighbour-

hood of the point ¢ = 0 not more than n branches exist. These branches are expanded
in fractional powers of ¢

s{e) = s+ Zl ae®  (j<na, >a, at I >1,) (32)
1=

and this expansion converges near ¢ = 0. The power of the first term of expansion is larger
or equal to I/n.
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For the calculation of these expansions let us present the analytical function at § = f,
in the neighbourhood s = 5., ¢ = 0 by the series

F(s%es.B,) = als—s, Ve + . Lay = e — KT 33
( 5*) jgo k;{) ﬂ(( *}J Jk f’k‘ 65;88;( ( )

The dots denote terms of the order of magnitude o(IH™™"), r* = |s—s,/* + &2, ago = 0.
Substituting the series s = s, +c¢,&" + ... into the equation (3.3), we get an identity. For
determination of an unknown exponent o; let us construct the Newton’s polygon [19].
On the x, y plane we plot the points with coordinates (j, k) and construct a convex broken
line through the extreme left points. Unknown exponents o, are equal to tangents of the
angles between the segments of broken line nonparallel to the coordinate axes, and the
x-axis. Let the extreme points of the segment be (j, k) and (j,. k), then ¢, is to be deter-
mined by the equation a;,,, ¢} '+ ... +a; = 0. The power of the equation is equal to the
quantity of units contained in the projection of this segment on the x-axis. It is not more
than n. For the calculation of the following term in the expansion (3.2) we must put in
equation (3.3) s = s, +c¢&* +w and repeat all the procedure for new series, etc.

Above the equation (3.1) has been considered, when f is fixed. It is easy to reproduce
corresponding considerations for a case when ¢ is fixed. Taking an implicit function s(f),
we obtain instead of the expansions (3.2) the following expansion suitable for the neigh-
bourhood of the point f§ = f, :

SiB~By) =se+ ¥ Hp—B (j<moy, >a, at I >1,) (3.4)
i=1
Instead of the expression (3.3) we get
Fs2,0,) = 3 % duls—s,J(B—B )+ ... (3.5)
j=0k=0

where dots denote terms of order of magnitude o(|r{™*"), r? = |s—s,|? +(5—~E*)2, dyo = 0.

Using expansions (3.2) and (3.3), it is possible to prove a number of statements about
the relation between the parameters 8, and B, when damping approaches zero. If at least
one of the branches (3.2) at arbitrarily small ¢ > 0 has a positive real part, so the statement
that B, < f, as ¢ — 0 is true. If all the branches have negative real parts, then B, = B, as
¢ — 0. In the case of vanishing damping it is sufficient to take into consideration only first
terms of expansions with real parts not equal to zero.

Let us prove firstly that at

F(s3, 0.B,/0p # O,
the multiplicity of the root s, may be not more than two. In fact, in this case
dy, = OF(s2,0,B/0B # 0,  ajo = "F(s},0,B,)/05" # 0.

Hence

’ i/n ' 0 iin
= ct:(_.fi?_z) : 5(;3,5*):5*{_.3&@%?] b (36

Qno Aap
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As the boundary value problem (2.3) for ¢ = 0 and < f§, has negative eigenvalues, so
the second term of the series must be purely imaginary. The last fact is possible only if
n = 2. Further we shall be limited by the case n = 2.

4. RELATIONS BETWEEN CRITICAL AND QUASICRITICAL PARAMETERS

We consider at first a case of flutter instability. In this case s, = iw, # 0. Let us show,

that in the presence of external damping
B.=B, at ¢-0. 4.0

In fact, in the case of external damping the damping operator in equation (2.2)is D(s) = As.
The characteristic equation (3.1) at § = f, has a form

F(52+5S, [}*) = . (42)
We get from equation (4.2)
sy O*F(sy. B,) 0%F(s2.B,)
doy =ay0=0, ap, = “21 ‘—?{:z””i ap = 2si~(.ﬂx—*2*—,
AF(s2, B,)
Gag = zsivw—{{:z——*—

where x = s%+¢s. The power of the first term of the expansion «, = 1 and coefficients of
the expansion are to be determined from the equation a,oc}+a; ¢, +aq, = 0. Taking
into account the explicit expressions of these coefficients, we obtain 4c? +4¢, +1 = 0.
Roots of this equation are ¢, ,, = —1/2. Hence

1006} = s, ~%e+ ...
and the relation (4.1) is valid.

If the coefficient
agy = @F(s.0,8,)/ # 0,

so the relation

Be<B, for £-0, (4.3)

holds. In fact, in this case in the neighbourhood of the point ¢ = 0 we have two simple
branches

Aoy 12
Sp.2(8) = s+ —w—w) ey (4.4)
a0

From equation (3.1) we get

AF(s2,0,8,) E(s2,0,8,)
apy = S*“““iay—*, dpo = 2Siv g:{‘z‘ * S (45)

where x = 5%, y = &s. As 5, = iw and o, and all the derivatives in the expressions (4.5)
are real quantities, so one of the branches (4.4) has a positive real part. Therefore the
relation (4.3) is proved.
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Let us come to a case of divergence instability (s, = 0). We suppose that the elastic
system is subjected to two sets of forces given with parameters 8, and 8,. At some com-
bination of these parameters the divergence instability may occur. The characteristic
equation has a form

F(Sza £s, ﬁl ’ /32) = 0 (46)

We show that in the presence of the external damping only, the relation similar to (4.1)
takes place too. From an equation analogous to the equation (4.2) we get

O*F/oek = s*O*Ejox*, k=12 ...

Therefore

n m
F(s*+es, By B =5 Y 3 aps ek 4 ..

J=0k=0

One of the characteristic exponents does not depend on ¢, i.e. s; = 0. The calculations give

dzo = 8F(O,ﬁ1*,[?2*)/ﬁx, aqy = aF(O,BJ*,Bz*)/(?X

Hence the power of the first term in the expansion «; = 1, and the coeflicients are to be
determined from the equation a,q¢y+a,; = 0. So ¢, = 1 and s,(¢) = —¢&+ ..., which
proves the relation (4.1).

In the general case of damping forces a following statement is true: the relation (4.1)
takes place when and only when the coefficient a,, # 0 and a;,a,, > 0. The condition
a,; = 0 yields an equation of curves where the divergence and flutter instability’s critical
surfaces intersect. These curves on the divergence instability’s surfaces we call singular.
In the case, when the parameter’s space is two-dimensional, we speak of singular points.

Differentiation of the equation (4.6) gives

OFF/oek = s*o*Fjey*, k= 1.2,....

Hence

n m

F(s? &5, Bra. Ba) =5 Y, Y aps’ '+ ...,

j=0k=0
and s, = 0. The calculations give

aF(OaO’BI*’ﬁZ*) a :fif‘_(o’()’Bl*’BZ*).

a =
11 3y 20 Ax
Then
ayy ajgy
o, =1, ¢y = ——, S(8) = ———e+ ...
Azo dzo

If ay a0 > O (the coefficients are real) the relation (4.1) holds.
Now we consider a new function

1

Fi(s? 5, Byys Bay) = ;F(Sz, &5, B> Bay)-
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For this function at ¢ = 0 the root s = 0 is simple. According to the theorem about implicit
functions, this root may be expanded in power series convergent in some neighbourhood
of the point ¢ = 0:

i 1 d*s(0)
5,(€) = s+ k; ae, s =350, a = AR (4.7
It is easy to show that
a, =a; =0, s,(e) = a;e+0(e*).

When damping is sufficiently small, we may take into consideration the first term only.
At a, > 0 this branch always has a positive real part, and at a¢; < 0 has a negative one.
Equation a, = 0 gives the singular (points) curves.

5. EQUATION OF THE CRITICAL SURFACE IN A CASE
OF INFINITESIMAL DAMPING

At < B* the equation (3.1) has no multiple roots. An arbitrary root of this equation
may be expanded in power series of the type (4.7). Coeflicients of this series obviously may
be expressed by means of partial derivatives of the left part of the equation (3.1). These
derivatives must be taken at ¢ = 0, and they depend on s3 and on parameters of the external
forces. Only the case s # 0 is interesting. From the properties of eigenvalues of boundary
value problem (2.2} it follows, that for a wide class of the damping forces’ operators, the
coefficient a, 1s rigorously negative at § = 0. Using continuity considerations, the critical
values of parameters at ¢ — 0 are to be determined from equation a,(s3, f,,8, ..., 8,) = 0.

The equation (3.1) yields
OF(s2,0,8,,B.--., B)/ce
al(s(z)’ﬁlvﬂZ""’ﬂn)z - 2 Bl ﬁZ B /

OF(s3,0, By, Bas- - Ba)fOs

Putting this coefficient to be equal to zero we obtain

(7F(s(2),0,[31,ﬂ2,...,ﬁ")

ce

=0 (5.1)

As s§ are eigenvalues of undamped system, so the equation (5.1) must be supplemented by
corresponding equation. As a result we have

aF(S(2)70’B17ﬂ2""’[)’n)
0O¢

=0, F(s3,0,8,,B5,....8,) =0. (5.2)

Thus the equation of critical flutter surfaces at infinitesimal damping is

OF(s*,0, 81, B2 By,
R[ F(s ﬂlagﬂz B F(sl,o,ﬁl,ﬂz,...,ﬁn)]=07 (53)

where R is a resultant. In general case construction of the resultant of two integer transcen-
dental functions is impossible. Numerical solution of this problem does not meet any
complications. In presence of the external damping only we have

aF(S%’ﬁl’ ﬁza-“sﬁn) _ 1 8F(sf‘,,ﬁ1,ﬁ2,. -"ﬂn)
O ) o(s?) ’
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and the formula (5.3) becomes

OF(s%, By, Bas- .. By
R|: (s ﬂ‘ﬁ(fj) ﬁ),F(sz,[fl,/}z,.._,/f,,):l:D[F(sz,ﬂl,/fz ..... Bl = 0.

\ Lim Bx
€0

N
AN

4y
d22
F1G. 2. Critical value as a function of the ratio of partial damping coeflicients.

The equation of critical surfaces is obtained by putting to zero a discriminant of the
characteristic equation

D . fa,....0)=0. 54

This result coincides with results about the correlation between the critical and quasi-
critical parameters in the presence of external damping only obtained earlier.

6. APPLICATION OF THE THEORY TO FINITE-DEGREE-OF-FREEDOM
SYSTEMS

The characteristic equation of an n-degree-of-freedom system in the presence of
dissipative forces is [3]

A(SZ, £S, ﬁ) = I(SZ+Qf)51k+85d1k+ﬁ93b}kl = 0. (61)

Here Q; are the partial natural frequencies, [d;] and [bj] are the matrices—finite-dimen-
sional analogs of operators C~'D and C~'B respectively. The matrix analog of the finite-
dimensional operator C~'A4 is reduced to the diagonal form.

The statements about the correlation between the critical and quasicritical values,
which has been obtained earlier, may be paraphrased in terms of the expression (6.1). The
simplest form of these statements will be obtained if the dissipation matrix is diagonal.
We discuss only this case.
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Let us consider the flutter instability (s, # 0, B* # 0). From the expression (6.1) we
obtain
oy = S,d;;i (52,0, B,),  ayo = 25,8;,¢%s2,0,B,)
1 ac(s2,0,B,)
Aoz = 55* BT A
aci(s2,0, B,) (6.2)

ayy = d;;c(s2,0, ) +5s,d;; o ,

acii(s2,0,B,)
ds ’
where ¢* are algebraic supplements of the corresponding elements in the determinant (6.1).
When the diagonal elements of the dissipation matrix are equal, so f, = /?* ate— 0.
This phenomenon was discovered by Bolotin [7]. Let us prove this result using general
considerations. Let d;; = d, = d. Without limiting of generality we can assume d = 1.
As by the condition a,o = 050 ag; = 5,6;,¢c" = 0. Other coefficients become

a9 = 5“C'”(Si, 05 B*)+S*

* 1)
1 acii(s2,0, 8,)
o2 = 584052

dc¥(s3,0, B,)

R S P

(6.3)

G2
_ ac(s,, 0, B,)
G20 = S0y 5

It is easy to show that in this case

oci(s3,0,8,) 25c”(si, 0, 8,)
0Os de '
Hence «, = 1, the roots of the equation a,,¢i +a, ¢, +ay, = 0 have negative real parts,
and the statement is proved.

If the sum d;;c¥/ is not equal to zero, then the coefficient a,, is purely imaginary. The
coefficient a,, is always real, and one of the branches (4.4) has a positive real part. There-
fore the relation B, < f, for ¢ —» 0 holds.

We consider separately the case of double partial frequencies. Without limiting the
generality let us assume that Q, = Q, = Q, = is,. At beginning we examine the behaviour
of the characteristic exponents of the undamped systems when f > 0. From the equation
(6.1) for ¢ = 0 we get

Let us suppose for example that byb,; < 0, by, = 0. Calculations yield
ag, =0, ayy =0,
ay = —4Q35 T](Q} - Q7).
j*1
j#2
Aoz = |byyby, H (QJZ--Q(Z))-

j#1
Jj*2
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Hence for arbitrary f > 0 one of the characteristic exponents is on the right halfplane.
Thus /? = 0.

Now let us examine the dependence of the characteristic exponents on the parameter ¢
for the case B* = 0. From equation (6.1) we get

ag; = 0, ay, = =2Q3(dy, +d,,) ” (Q -Q3),
=y
132

dida| & "

ag, = —Q3 1 [T @QF Q) ay = —4Q% T[] (Q2-Q)).
d21 d22 j#; j#t
j* j*2

Here «; = 1, and the equation a,oci +a, ¢, + a9, = O has roots with negative real parts.
Therefore §, = ﬁ* at e — 0.

Now we come to the case of divergence instability (s, = 0). We present the charac-
teristic equation for a system with » degrees of freedom in a form

L6, 1 ) = Is® + Q)6+ esd y + Q7 (BB + B0 = 0, (6.5)

where 5, and B2 are parameters of the external forces. Let us suppose that a divergence
instability of the system is possible, i.e. there exist such quantities f3,, and f,, that

A(0~ O’Bl*vﬁl*‘) = 0 (66)

Otherwise we can write
165+ B + B4 b3 1"[ Qf = (6.7)

Now we examine the dependence of the roots of the equation (6.5) at 8, = f,, and
B, = B,, on damping parameter ¢. From the equation (6.5) we obtain
a0k=0 (k=0, 1,2,...), 010:0,
Az = 6fj C‘”(O, 09 ﬁl* 5ﬁ2*)’ al 1= djkcjk((), 0’ Bl‘* > BZ*)'

All the coefficients are real. From the first condition (6.8} it follows that the polynomial
(6.5) has a factor s. Thus s, = 0. The remaining conditions yield «; = 1, ¢, = a,,/a,, and

(6.8)

a
s,(8) = — et (6.9)

azo
Consequently, if ay 120 > 0,50 14 = Biy»Bau = Bawate — 0;ifayaz0 < 0,50 14 < By
or B, < B2, at e — 0. Singular points are to be determined from the condition a,, = 0.
Let us construct an equation of critical flutter surface for a case of infinitesimal damp-

ing. Developing the determinant, we write the equation (6.1) in a form
Py, = pos?+epi52 T 4 pas?t T2 4epas® T+ L 4 epa 1S P2t - (6.10)

Unwritten terms have an order of magnitude o(¢); the coefficients p ; depend on the external
loads parameters and on the elements of damping matrix [d;]. When damping is absent
(¢ = 0) and at § < B, the equation

25 = PosP 4+ PSP T4 pasT T L P2 =0, 6.11)
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has purely imaginary and simple roots, and p,, # 0. At f < f, each root of the equation
(6.1} is an analytic function of the parameter ¢. An asymptotic expansion of this function is

s(e) = sg+a,c+ole)

where s, = s(0), a; = ds(0)/de. According to the theorem on implicit functions we obtain
from (6.10)

ds0) _ solpasg™? +pase”

de ép,,

(‘ES =0

+o +p2n—3s(2)+p2n~l)

Putting the coefficient a, to zero we get

.7;1—1(53) = [’15(2)"_2
As the quantities s2 are the roots of the equation (6.11), so calculations reduce to con-
struction of the resultant of two polynomials f,_, and g,. From the polynomials theory
it is known that

2n— 4

403857 o Do 385+ Paney = 0.

Py Ps Ps -t Pra-i 0 e 0

0 p1 Py - Panes 0 0)rn
R(foey.g,) = OOPIPZ”SO ..... O =

Po P2 Ps - Pap-z P2 - 0O

0 po p2 Pon~a  DPan-2 0|rn—1

0.0 P01 Pame Pams 0

Py P3 Ps Pap-1 0 0

Po P2 Pa Pan-2  Pan 0

10 poops Pan-3  Pan-1 0 |= At
O bo P2 i Pacs a2 O

where A,, . is a Hurwitz’ determinant of the 2n— 1 order corresponding to a polynomial
obtained from the polynomial (6.10) by an obvious procedure. Thus the equation of the
critical flutter surface when damping is infinitesimal, has the form A,,_, = 0.

7. EXAMPLE OF A CONTINUOUS DAMPED SYSTEM

Let us consider a problem on stability of a cantilever bar subjected at the free end
to a tangential force P and a dead load Q (Fig. 3). The bar is made of the linear standard
viscoelastic material with the deformation law as follows

Ly(g) = Lyfe)

Here
T 0 1 0
L2 = r—[+ 1

Ly =— —4-—
! anzJ’Eﬁ’ é
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X

F4

F1G. 3. Cantilever subjected to follower and dead forces.

o—stress, e—strain, t—relaxation time, E, and E_-—unrelaxed and relaxed moduli,
respectively. For the investigation of stability the dynamic method [3] is used. Equation
of small vibration of the viscoelastic bar near the equilibrium position is obtained using
the elastic-viscoelastic analogy. The elasticity modulus in equation written for elastic
bar is to substitute by a complex modulus, E* = L,(s)/L,(s) where s is the characteristic
exponent. As a result we get the following nonself-adjoint boundary value problem

d‘w a*w
(l+ns)—d’54—+(oz+ﬁ)(l+yns)~(i—g5—+(sz+yns3)w = 0 (7.1)
w
W:%E-z() at =0
(7.2}
d>w 3
bdz"zw 0 at ¢=1
W 1+ypsdW

a& T s de
Here W{{}—vibration mode,
x pi? or

ro__ — — e
=TT e YTET
J—inertia moment of the cross section, I—length, m—mass per length unit, y = E_/E,,
0 < y < 1. The parameter 1 characterizes the energy dissipation. Putting y = 0 we obtain
the Voigt material. The parameters « and f are positive if the corresponding forces pro-
duce compression of the bar. Further a case « > 0 and > 0 is considered.

A solution of the equation (7.1) has a form

E.J
=Q 0=
Ui 0T, O ml4

4
W) = Y Cjete,
i=1
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where ; (j = 1,2.3.4) are roots of the equation
(1+n)A* + (a+ PY(1 +yns)A 4+ (s> +yns?) = 0. (7.3)

Satisfying the boundary conditions (7.2) a set of linear algebraic equations for C; is
obtained. Condition of existence of nontrivial solution yields

1 1 1 1
A 1 1 i,
i . ) =0 (7.4)
Aeh Alen ideh AZeh
A +ydper (B+yd)et (B3+yds)er (Ai+yiy)et
_ I+yns
V= T4ns

The roots of the equation (7.3) are

2
Ay ={(1+ns)"* {—#(lwnsw[&xt‘m

1

2

(L+yns)* — (1 +ns)(s? +7ns3)] }

2 $)4
Ay = i(1+’75)‘*{%—ﬁ(1+yns)+ [(ﬁ‘iﬁ—)(l +yns)* = (1 +r1s)(s2+*ms3)] }

4

Ay = — A4, Ao = —4,.
Expanding the determinant (7.4) we obtain the following characteristic equation:

F(Ay dy ) = 244234 2 452 + 42) shd, shi, — 22242 chA, chi,

(7.5)
+y[A2+ 23 —(A2 + 23) chd, chi, + 24,4, shi, shi,] = 0.
Another form of this equation is
] v
Fs,n.0u f) = — " (o4 f)? —25%(1 + chi, chis)
I+ys
1+7yns)?
+s(x—f)| +’n ; ) sh/, shi, (7.6)
1 +yns , .
—oc(oz +[3)Tns‘(l —ChAl Ch/Lz) = 0.
Let us consider divergence instability. Setting in the equation (7.6) s = 0 yields
xcos \J(a+py+ B = 0. (1.7

On the «, f-plane this equation determines boundaries of the divergence quasistability
region. As was mentioned above, the singular points divide this line to stability and in-
stability segments. Singular points are to satisfy the equation

02F(0,0,%,, f,)
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From the equation (7.6) we obtain
Bty €08 (2 + B — oo+ f) 8in o, + ) = 0. (7.8)
Asd, and B* satisfy the equation (7.7}, we get from equation (7.8):
T+ P =T (7.9

This straight line on the «, f-plane intersects the curve (7.7) in a single point (x, = f, = 7°/2}.
Thus a point (x, = 8, = 7°/2) is a single singular point on the boundary of divergence
instability. Using considerations from Sect. 2 and 3 we conclude, that the segment of this
line adjoining to the «-axis is a stability boundary. The rest of this line belongs to the
instability region.

Let us consider the flutter instability. From equation (7.5) we find that

(?F (’l/:.).+(w[: { 1) (7 10)
Aoy = T 1), :
R O B A ’ :

and
cF 84
dyg = Z ,;,‘"TJ:()\ (71“
212045 €8
according to condition. Here a zero above the letters denotes that these expressions are
taken at § = 0,5 = s5,, 2 = 4,. § = P,. As all the roots of the equation (7.3) are different

y Dy =g a12)
0s 4342, + Py o 403+ 2, + B4 o
ad; (=it
—t = = ]’ 2).
én Os 2 J )

Taking into account relations (7.12) we may factor out of the brackets the complex
factor and consider the sums as a scalar product of appropriate vectors in three-dimen-
sional space. This consideration yields that the quantity ao; # 0 and that it is purely
imaginary at arbitrary 0 < y < I and s, # 0. Hence o, < &, or 8, < B, at n — 0 and at
arbitrary 7.

The equation of the boundary of flutter instability at # — 0 is to be obtained by the
elimination of w from the following set of equations [see equation (5.2) also]:

2 -1
+w?

+ (1)2:| 2[rg(ozz +af+2m?)

P+ ﬂ)+[ri(az+aﬂ+2w2>—w(a—/f)ri][(“%ﬂ-

ox+
xchrycosr,— H?

+w(e—p)r3lch r, sinry—3w(a—f)sh rysinr,

2

+afe+pB)chricosr, =0 (7.13)
B+ B)+2w? —w(a—P) shry sinry + [oa+ f)+2m*] chrycosry = 0

, 1+ f a+p\2 L
e
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8. METHOD OF NUMERICAL ANALYSIS

The behaviour of the characteristic exponents when one of the parameters varies has
been investigated numerically. Solution of the transcendental equations has been reduced
to a Cauchy’s problem for a set of two ordinary differential equations of the first order.
The general idea is as follows. Setting in equation (5.5} s = {-+iy and dividing real and
imaginary parts yields:

FI(é» d/’ ’19 a, .B) = 0

¢ (8.1)
Fr& oy, o p) = 0.
After the differentiation of the equations (8.1) with respect to § we obtain
OFp dS CFdy - OF
cEapT i dpT T
\ (8.2)

(‘}’FRdé FFRdl//- (QFR

= s = ——=,
of dp - oy dp op
Transforming this set of equations to the normal form (this procedure is always admissible
as 1 # 0) we get the following Cauchy problem:
OF; 0Fg  OF; 8Fg

d& o o op

— = (8.3)
d .
8.3) B J(Fy, Fg)
OF, OFx_0F oF
d,'ﬁ _ o oy op &
dg J(Fr, Fr)
fj{ﬂo) = fjo
(8.4)
‘//;{ﬂo) = ‘/’jo
where
I, Fy) 0F, 0Fy OF, 0Fg

Ty e ek
The Cauchy problem has been solved numerically by a digital computer using
Runge-Kutta’s procedure. Partial derivatives in the equation (8.3) were substituted by

finite difference expressions. Initial dates were computed by the gradient method. Instead
of equation (7.6) the following equation was considered :

(&, .m0 B) = |Fls,m o, B = 0. (8.5)

Successive approximations for roots of the equation (8.5) were calculated using a formula

Zyry = Z— A4 grad Oz, , o, f) (8.6)
where vector z, = {&, ¥, } and
;Lk _ ‘q)(zk’ 71, aaﬁ)

" lgrad ®(z;, 7, o, B
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Computation of the boundaries of the instability regions on the a, S-plane at different
values of n and y were performed by the same method. The critical value 8, of the para-
meter at fixed values of the parameters o, y and # was determined as a minimal root of the
equation (8.5) at £ = 0. Evaluation of the boundaries of quasistability regions and stability
regions at 7 — 0 were made by similar procedure. Calculations were realized by computer
BESM-2M.

9. DISCUSSION OF RESULTS

The instability regions on «, f-plane for different values of damping parameters y
and 7 are presented on Figs. 4-7. Here by broken lines the boundaries of quasistability
regions corresponding to the case # = 0 are plotted.

Let us discuss in detail Fig. 4 corresponding to the case y = 0 (the bar is made of
Voigt’s material). Both the stability and quasistability regions are limited by lines of two
types: the lines intersection of which is accompanied by vibrational instability, and the
lines associated with unvibrational instability. The Fig. 4 shows that the introduction of
infinitesimal damping (7 — 0) transforms a considerable part of the quasistability region
in the instability region. For example, when « = 0 (the bar is subjected to the follower

y =0

.
Tl /{/"

Flutter instability

e

W

Divergence
instability

FiG. 4. Instability and quasistability regions at y = 0 and at different values of .
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F1G. 5. The same at y = 0-2.

|w
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~
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y =06

Flutter instability
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Divergence instability

Al rj-
™

F1G. 6. The same at y = 06.
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2

3

y=0.8

% , Flutter instability

Divergence
instability

q‘o roj— p——
~

F1G. 7. The same at y = 0-8.

force only) the critical parameter f§, = 1094 is approximately twice less than quasi-
critical value B, = 20-05. This fact has been mentioned earlier too [3, 6, 11]. When damping
parameter # increases, the stability region is gradually widening. But even at # = 0-20
a considerable part of the quasistability regions belongs in fact to the instability region.

There is an interesting fact in the presence of a singular point at « = § = n2/2. At
this point the vibrational instability curves corresponding to various values of # and the
unvibrational instability curve intersect. Another interesting fact is that the stability and
quasistability regions are unconvex (it is known [20] that stability regions for elastic
systems subjected to conservative forces are convex). Unconvexity of stability region of
the panel flutter problem has been mentioned by Bolotin [3].

In connection with the question about the unconvexity it is appropriate to remember
a phenomenon of the jump of the critical force discovered by Dzhanelidze [17]. Dzhanelidze
has considered a problem of the stability of a cantilever with a concentrated mass on the
end compressed by a dead and follower forces. Damping was not taken into account.
Plotting the sum P + Q corresponding to the boundary of the quasistability region against
to ratio P/Q, Dzhanelidze has found a jump at P/Q = 1. This jump corresponds to the
transition from the static instability line to the vibrational instability line. The jump
phenomenon in the double pendulum problem was discussed by Herrmann and
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Bungay [21]. An analogous result was obtained in a case of the distributed mass (see
Fig. 8). Some authors state that this fact is a consequence of the oversimplification of the
problem, and they suppose that the jump will be eliminated when damping is introduced.
In fact in presence of damping the jump of the «+ f8, §/« plane vanishes (Fig. 8). But the
real cause of the jump is unconvexity of the stability region. The unconvexity remains in
the presence of damping (Figs. 4-7). Therefore, replacing the parameters «, f§ by its inde-
pendent combination we can find out the jump phenomenon too. The jump on a+f,
p/a plane disappears because of the coincidence of two points: the contact point of the
line & = f with the static instability curve and the singular point.

2 /J__’_'
I S !

| nz0
§3 m=0.454 MA:’;—:?—_
Lo
a+B
-”2

n~0 n=0.05 n=010

=

/

Q"mu

F1G. 8. Summary critical force as a function of the ratio of follower and dead forces.

The diagrams presented on the Figs. 4-7 show a gradual alteration of the stability
regions when the parameter y increases from zero to y = 0-8. The topology of the stability
regions does not vary. But the increasing of y causes a weaker dependence of the curve
of the vibrational instability on the quantity n. Considering partial damping coefficients
corresponding to the two first natural modes we obtain a qualitative explanation of this
phenomenon. Rigorously, a concept of partial damping coefficients for a dissipatively
bounded system is conventional. We shall express these coefficients through the power of
damping forces when displacements coincide with natural modes of an elastic bar and the
frequencies of motion coincide with natural frequencies. Thus

where Eg(w,) and E{w,) are real and imaginary parts of the complex modulus at the
natural frequency w,.

The ratio of two first partial damping coefficients d,,/d,, is plotted on Fig. 9 against
the parameters y and #. The diagram shows that when the parameter y increases, the ratio
dy2/dy, increases too. Using an analogy with finite-degree-of-freedom systems (see for
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30

7n=02

20

dz
dy

7=0.01

F1G. 9. Partial damping coefficient as functions of the value 7.

example Fig. 2) we can suppose that the increasing of y causes the decreasing of the critical
parameters. Results of direct computations are in agreement with this statement.

A next question to be discussed is the following one. Intuitive considerations [7] let
us suppose that in spite of rigorous theory the quasicritical parameters have some physical
and engineering sense. When damping is sufficiently small, the exceeding of the quasi-
critical value results in some variation of the behaviour of the physical system. To investigate
this phenomenon, the properties of the characteristic exponents will be studied in the case
of sufficiently small damping.

The real and imaginary parts of the two first characteristic exponents s,, 5, as functions
of the follower force parameter § at & = 0, y = 0 and at different values of » are presented
in Fig. 10. For comparison on the same diagram the characteristic exponents calculated
at # = 0 are presented. When # is very small (for example when # = 0-001) the character-
istic exponents differ a little from the calculated for the case n = 0. But alteration of the
sign of the real part Re s, occurs at < fi,. It is essentially, that when # is very small the
increment Re s, is sufficiently small in the range 8, < § < fB,. The rapid growing of the
increment begins only when B > B,. Hence, although at very small 5 the exceeding of the
critical value § leads to the instability, but the sharp growing begins only, when exceeding
of the quasicritical value f§, occurs. On the Fig. 11 the increment Re s, is plotted against
on a large scale (n = 0-001). An analogous diagram for a two-degrees-of-freedom system
was presented in the paper by Herrmann and Jong {9].

10. CONCLUDING REMARKS

In this paper a question about relations between stability and quasistability regions
was considered both from a general point of view and on numerical examples. A method
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of expansion in fractional powers of parameters is applied. A principal conclusion is:
for real laws of damping a considerable part of quasistability region belongs to the in-
stability region. From this rigorous point of view the majority of papers dealing with
stability of nonconservative systems (including panel flutter) need to be reconsidered.

22

20 \

AN

16 \\
19

7:0.005

=0
2 i
7=0.00I \
—

10 <t ]

7=0.005

Ims Res

O =—=t==—="= ) q B*
1)=0.0(?Wk
-2 7:0.005 \\\\
-4 4 8 12 6 20 24 28
B

Fig. 10. Real and imaginary parts of the characteristic exponents s; as functions of the parameter f
at different .

Only in a case of very small damping may we expect that for mutual parts of the stability
and quasistability regions a “*quiet” flutter is typical and for the vibrational instability
region (in proper sense}—a “‘violent” flutter. It is a hypothesis that has to be confirmed
by solution of nonlinear problems and by experiments.
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F1G. 11. Real part of the characteristic exponent s, as a function of the parameter § at y = 0-001.
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Peizfome—PaccmaTpuBaeTes BONPOC O COOTHOWCHHWM 00nacTeil YCTORYMBOCTY M KBA3ZUYCTOHYMBOCTH s
YOPYTUX W BA3KOYNPYTMX CUCTEM, HATPYXEHHBIX HEKOHCEPBAaTHBHbIMM CwiaMu. Ha ocuose metona
pa3noXeHus NO APOOHBIM CTENEHAM MAPAMETPOB CTPOrO HOKa3aHbl YTBEPXIECHHA, KOTOpbIE paHee
BHICKA3bIBAAKHCL B paae paboT Ha OCHOBAaHWM HWOAYWHTYWTHBHBIX cooOpaxenuwi, aprymextauuu no
AHANOT MK Y HENOJIHOR MHAYKUMM. B nepBo#t 4acT CTaTed npu OOIMX MPEANONOKEHUAX AOKA3bIBACTCS
pAA YTBEPKAEHHI Kak st PACUPEAESEHHBIX TAK M A OUCKPETHBIX cuctem. [lokasmiBaeycs, yro ans
peasibHbIX 3aKOHOB AeMIGUPOBAHNS 3HAYNTEbHAN YACTh 061ACTH KBA3NYCTORYMBOCTH B 1€HCTBHTEIBHOCTH
npuHamienut obnactn neycroiumsoctu. C 9ToM TOYKM 3peHus nopasnstoinee BosiblunbcTeo pabor 1o
YCTOMHUBOCTH HEKOHCEPBATHBHBIX YIPYIMX CueTeM (BKItOYas paboTht HO naHenbHOMY GIaTTEPyY) HYKBACTCH
B nepecMotpe. Ui namiocTpatd oOKX YTBEPKACHMHA BO BTOPON HACTH CTATHH NPUBCANTCA YUCAEHHOE
HCCNENOBAHUE YCTOMUHBOCTH KOHCOABHOIO CTEIKHA U3 NUHEHHOTO CTAHAAPTHOIO BS3IKO-YNIPYLOro
Matepuana, HarpyxeHsoro cheasuiet u Meprsoit cumamu. OOcyxpaercs psag ssneHuit, npUCyLIMX
HEKOHCEPBATHBHLIM BAIKO-YIPYIMM CHCTEMAM.



