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EFFECTS OF DAMPING ON STABILITY OF ELASTIC
SYSTEMS SUBJECTED TO NONCONSERVATIVE FORCES

V. V. BOLOTIN and N. I. ZHINZHER

Moscow Energetic Institute, U.S.S.R.

Abstract-A question of the correlation between stability and quasistability regions of elastic and viscoelastic
systems subjected to nonconservative forces is discussed. On the base of the method of expansion in fractional
powers of parameters the more rigorous considerations are presented than the considerations used in the earlier
papers where the semiintuitive assumptions, the arguments by analogy and the incomplete induction methods
were applied widely. In the first part of the paper a number of general statements concerning bOlh continuous
and discrete systems are proved. It is shown that for real laws of damping a considerable part of the quasistability
region belongs in fact to instability region. From this point of view a number of papers dealing wilh non
conservative stability problems (including panel flutter problems) must be reconsidered. To illustrate the general
statements. in the second part of the paper a numerical examination of stability of cantilever bar made of the
standard viscoelastic solid and subjected to follower and dead forces is presented. Some phenomena inherent
to the nonconservative viscoelastic systems are discussed.

1. INTRODUCTION

STABILITY of elastic systems subjected to nonconservative forces has been studied by
many authors beginning with Nikolai [1,2]. A review of results in this area is given in a
book by Bolotin [3J and in papers by Herrmann [4J and Dzhanelidze [5].

One of the most important and interesting aspects of the theory is connected with
damping effects in stability problems. Ziegler [6J, dealing with a double mathematical
pendulum subjected on a free end to a follower (tangential) force, has found that addition
of a small damping can reduce the value of the critical force in comparison with one found
not taking into account the damping. Bolotin [7J has investigated a dependence of critical
parameters on the ratio of partial damping coefficients. He has proved that a reduction
of critical parameters caused by the addition of vanishing damping is absent only in a case
of equal partial coefficients. Later. effects of damping on stability of elastic systems subjected
to nonconservative forces have been studied by many authors. Some of the problems have
been discussed by Leonov and Zorii [8J, Herrmann and long [9,22J and Leipholz [IOJ,
Leonov and Zorii have studied effects of friction on the stability of a cantilever bar sub
jected to follower and dead forces and having at its end two equal masses located at some
distance from each other. Herrmann and long [9J studied the influence of damping in
Ziegler's model [6]. Leipholz [10J has considered a discrete system with a diagonal damp
ing matrix.

Some general results related to the stability of nonconservative systems have been
obtained by Nemat-Nasser, Prasad and Herrmann [l1J, Nemat-Nasser and Herrmann
[12]. Expanding the characteristic determinant in integer powers of damping parameters,
authors have made some conclusions about the behaviour of characteristic exponents of
discrete systems with small damping. Their results are presented in form of theorems on
the destabilization condition due to damping. An attempt was made to extend these
results to continuous systems. This question was also discussed by Nemat-Nasser [24].
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The expansions used in papers [11, 12J become improper near the critical values of
parameters of external forces. Zhinzher [13J has applied in this case an expansion in
fractional powers of the damping parameters. Thus some general statements on the
behaviour of critical parameters of external forces when damping vanishes are obtained.

This paper is dedicated to a systematical study of damping effects on the stability of
finite-degree-of-freedom and continuous systems subjected to nonconservative forces. A
method of expansion in fractional powers of parameters is applied. This method permits
one to establish in a general form a number of results which have been discussed previously
only on the base of simple particular examples. Further by means of this method a set of
general statements is proved rigorously.

The paper consists of two parts. The first part deals with general problems. Generaliza
tion and development of some results [3, 6--13J concerning to the paradoxical behaviour
of elastic systems in the presence of small damping is presented. This question is discussed
from the point of view of the Liapunov's theory of stability. A concept of quasistability
corresponding to the doubtful case in the Liapunov's theory and a concept of quasi
critical load's parameters are introduced. The not very appropriate concept of the destabiliz
ing effect of damping is replaced by more rigorous and exact terms. In a general form an
investigation is undertaken of an equation connecting characteristic exponents, damping
and load's parameters. A question of the structure of an expansion of the roots of the
characteristic equation in fractional powers of the damping parameters is investigated.
General properties of critical parameters in the presence of small damping and their rela
tions with quasicritical parameters are found. The cases of divergence instability (zero
characteristic exponents) and cases of flutter instability are considered. An example of
elastic system with multiple natural frequencies first considered by Nikolai [1, 2J is dis
cussed separately. General methods are illustrated with examples of discrete and con
tinuous elastic systems.

The second part of the paper is dedicated to a comprehensive numerical analysis of
one special problem. As such one the stability problem of a cantilever bar subjected to
tangential and dead forces is considered. The material of the bar is supposed to be a
standard viscoelastic solid. So, damping forces are characterized by means of two constants:
it allows to include a wide diapason of variation of partial damping coefficients. The two
damping constants and two parameters of external forces form a four-dimensional space.
The stability region in this space (more exactly in correspondingly selected subspace) is
determined by the mapping of imaginary axes on the characteristic exponents' plane.
Calculations were made by digital computer. The dependence of critical parameters on
damping parameters and on the ratio between parameters of the tangential and the dead
forces is discussed. The jump paradox of the resultant critical force discovered firstly by
Dzhanelidze [17J is also discussed. The behaviour of characteristic exponents due to varia
tion of external forces parameter and damping parameter is investigated.

2. GENERAL CONCEPTS

The fundamental problem of the stability theory of deformable systems is the calcula
tion of values of system parameters and (or) external condition parameters corresponding
to transition from stability to instability. These values are called critical. Most often the
values of external forces are considered as such parameters; in this case the critical forces
are discussed.
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Let us consider for example a problem characterized by a single parameter /3. Without
any limitation of generality, we can assume that /3 is varying within the limits 0 S /3 < CfJ

and that the undisturbed motion is stable at /3 = O. The upper limit of the values /3 = 13*
when the undisturbed motion is stable is called critical. In the more general case of finite
number of parameters it is expedient to introduce the n-dimensional space of parameters
/31,132,"" /3n and distinguish in this space stability and instability regions. The surfaces
<1>(/31' /32' ... , /3n) = 0 dividing the stability and instability regions are called critical.

A general investigation method of stability of elastic systems consists of the analysis
of the set of motions neighbouring to the undisturbed one. This method connected with
the general theory of stability is called the dynamic one [3]. The linearized equations of
disturbed motion are usually applied by investigation of stability of equilibriums' forms.
These equations describe small vibration of system near the undisturbed equilibrium. So
this method is called also small vibrations' method [1,2].

The small vibration method is analogous to the well known method of "equations aux
variations" in classical stability theory of Liapunov-Poincare. In this theory theorems on
the conditions under which the linearized equations give the comprehensive solution of
the Liapunov's stability problem are proved rigorously. The generalization of the
Liapunov's theory to continuous systems is based on the consideration of solutions'
closeness in some metric functional spaces. Up to now all rigorously proved results in this
field concerned potential systems only [15, 16]. Nevertheless with some restrictions we can
expect that a decaying character of all possible motions of the linearized system would
provide asymptotic stability of nonlinear system in some properly chosen functional
space. This statement turns out to be true in particular for elastic and viscoelastic systems
of finite dimension. In this paper we shall assume this assertion as a postulate.

Let us consider the problem of the stability of equilibrium when the elastic system is
subjected to nonconservative forces depending on position and to dissipative forces. The
linem ized equations of motion of the elastic system are satisfied, if the displacement vector
u is chosen in the form

(2.1)

Here rp is the vector defining the vibration mode, t - time, s - characteristic exponent.
The vector rp is to be determined from the following nonselfadjoint boundary value
problem [3J:

(2.2)

In the operator equation (2.2) A and C are positive selfadjoint linear operators in some
Hilbert's space (gradients of kinetic and potential energy of elastic system respectively),
D(s) is a positive operator characterizing damping forces, B is a nonselfadjoint linear
operator in the same space, characterizing nonconservative forces. In the general case the
operator of nonconservative forces depends on the characteristic exponent s. When the
material is viscoelastic, the operator C depends on s too. The dependence of the operators
D and B on the parameters c and f3 can be more complicated, but the operators will be
zero operators when c and f3 vanish. The specific form of the operators is determined by
the linearized vibration's equations and by the boundary conditions.

The operator equation (2.2) corresponds to an eigenvalue problem with three para
meters: the characteristic exponent s, the load parameter f3 and the damping parameter c.
When f3 = 0 all the characteristic exponents are in the left half-plane ofthe complex variable.
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It is because the operators A, C and D are positive. All the motions (2.1) of the linearized
system are decaying in time. Analogous to the classical stability theory this will be qualified
as asymptotic stability. When the parameter f3 varies continuously, the characteristic
exponents vary continuously too. At some value {J at least one of the exponents will be
imaginary. When parameter {3 increases, the characteristic exponents with positive real
part appear and consequently the instability occurs (Fig. la). The critical value {i is
determined from condition that at fJ > fJ* among the characteristic exponents s at l:ast
one exponent with a positive real part will appear. When the transition to the right half
plane through the value s = 0 takes place, so instability is unvibrationai. In other cases
the vibrational instability takes place. In aeroelasticity problems one speaks of divergence
and flutter, respectively.

When the dissipative forces are not considered we have instead of equation (2.2) an
operator equation

[As 2 + C + fJB]cp = O. (2.3 )
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FIG. 1. Behaviour of the characteristic exponents on the complex plane.

If {3 = 0 the boundary value problem (2.3) is selfadjoint. All the eigenvalues 8
2 are negative.

Hence all the characteristic exponents are purely imaginary. Let the parameter {3 increase
monotonously. At some value fJ = iJ* one or several couples of exponents become mul
tiple. When the parameter fJ increases further the exponents can become complex. Thus
the characteristic exponents with positive real parts appear (Fig. I,b).

In papers dealing with stability of elastic systems the presence of characteristic expo
nents on the imaginary axis is qualified usually as stability, and the value fJ* as a critical
one. In other words, stability is interpreted as a bounded character of motions of the
linearized system, near equilibrium. This is analogous to the doubtful (critical) case in
Liapunov's theory, when "equations of variations" do not answer the question about
stability. Thus there is no sufficient reason for application of the small vibration method
in this version. Even an analogy with the stability theory of discrete systems does not hold.

Analogous to the classical stability theory the case of purely imaginary characteristic
exponents is to be qualified as a doubtful one. When the external forces are potential, an
application of direct Liapunov's method in some metric spaces yields a rigorous proof of
stability at fJ < iJ* [15, 16]. In this case an introduction of arbitrary small (but complete)
dissipation displaces all the characteristic exponents from the imaginary axis to the left
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halfplane. If the external forces are nonconservative, the addition of the dissipative forces
with complete dissipation eliminates the critical case too. But it appears [6,7,9, 22J that,
generally, only a part of the segment 0, P* belongs to the stability region and that the
vanishing of the dissipation does not imply 13* ~ P* (Fig. lc).

In previous papers dealing with the damping effects on stability of nonconservative
systems the inequality {3* < P* has been interpreted as a destabilization phenomenon
caused by damping. But it seems, that it would be more correct to speak not of destabiliza
tion but of false conclusions based on the interpretation of the critical case as a stable one.
The "destabilization paradoxes" are consequences of noncritical application of the small
vibrations' method. We shall show further below that solutions obtained without a con
sideration of damping, retain some sense. It is expedient to introduce a terminology,
providing an appropriate place for these solutions. Let us call quasistability a case, when
all the characteristic exponents are on the imaginary axis. Let us call quasicritical such a
value of P*, that as (3 > P* at least one exponent comes to the right halfplane. Using this
terminology, we can say that in papers discussing stability without considerations of
damping, in fact only the quasicritical parameters have been determined. A question
appears: what is the correlation between the critical and quasicritical values? In the real
structures the damping is sufficiently small usually. Hence another question appears: how
the critical values behave, when parameters of dissipation approach to zero? These ques
tions will be discussed in the general form applicable both for discrete and continuous
systems.

3. EXPANSION OF CHARACTERISTIC EXPONENTS IN FRACTIONAL
POWERS OF PARAMETERS

Let the characteristic equation of the eigenvalue problem (2.2) be

F(S2, es, (3) = o. (3.1)

Setting e = 0 we obtain a characteristic equation of the eigenvalue problem (2.3). At e = 0
and {3 = P* the equation (3.1) has n-multiple root s = s*. Hence

The quasicritical value P* for the undamped elastic system corresponds to the junction
of n couples of the characteristic exponents. The left part of the equation (3.1) is an ana.
lytical function. At arbitrary fixed (3 this equation determines inexplicit function s(e).
According to the preparative theorem of Weierstrass [18J, this equation at (3 = P and
in the neighbourhood of the point s = s*, e = 0 is equivalent to an equation of po~er n
for s - s*. Coefficients of the last equation are analytic functions of e. In the neighbour
hood of the point e = 0 not more than n branches exist. These branches are expanded
in fractional powers of s

Sj(S) = s* + L elsal

1=1
(3.2)

and this expansion converges near s = O. The power of the first term of expansion is larger
or equal to lin.
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(3.3)

For the calculation of these expansions let us present the analytical function at /1 = /3*
in the neighbourhood s = s*, I) = 0 by the series

" m 1 j}J+kF(S2 0 P)
F(S2,SS,P*) = L L (ljk(S-S*)lEk+ ... ,(ljk = ":'kl a '~'k ' *

.,=Ok=O }. . SOS

The dots denote terms of the order of magnitude o(lrlm + "), r2 = Is - s*1 2 +1;2, aoo = O.
Substituting the series s = s* +CIB'" + '" into the equation (3.3), we get an identity. For
determination of an unknown exponent !Xl let us construct the Newton's polygon [19].
On the x, y plane we plot the points with coordinates (j, k) and construct a convex broken
line through the extreme left points. Unknown exponents !XI are equal to tangents of the
angles between the segments of broken line nonparallel to the coordinate axes, and the
x-axis. Let the extreme points of the segment be (j, k) and (j I' k l ), then Cl is to be deter
mined by the equation (lj,k1d' - j + ... + (ljk = O. The power of the equation is equal to the
quantity of units contained in the projection of this segment on the x-axis. It is not more
than n. For the calculation of the following term in the expansion (3.2) we must put in
equation (3.3) s = S*+CI"'" +w and repeat all the procedure for new series, etc.

Above the equation (3.1) has been considered, when fJ is fixed. It is easy to reproduce
corresponding considerations for a case when" is fixed. Taking an implicit function sUi),
we obtain instead of the expansions (3.2) the following expansion suitable for the neigh
bourhood of the point j} = P* :

x.

sifJ - 13*) = s* + L c;(fJ - P*)'"
1= I

Instead of the expression (3.3) we get

(3.4)

" m
F(S2, 0, fJ) = L L aJk(s - s*)j(fi - P*)k+ ... ,

j=O k=O

(3.5)

where dots denote terms of order of magnitude o(lrlm
+ "), r2 = Is - s*1 2 + (fJ - 13*)2, (l~o = O.

Using expansions (3.2) and (3.3), it is possible to prove a number of statements about
the relation between the parameters fJ* and 11*, when damping approaches zero. If at least
one of the branches (3.2) at arbitrarily small" > 0 has a positive real part, so the statement
that fJ* < P* as e ..... 0 is true. If all the branches have negative real parts, then fJ* 13* as
e ..... O. In the case of vanishing damping it is sufficient to take into consideration only first
terms of expansions with real parts not equal to zero.

Let us prove firstly that at

the multiplicity of the root s* may be not more than two. In fact, in this case

Hence

(3.6)
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As the boundary value problem (2.3) for e 0 and f3 < P* has negative eigenvalues, so
the second term of the series must be purely imaginary. The last fact is possible only if
n = 2. Further we shall be limited by the case n = 2.

4. RELATIONS BETWEEN CRITICAL AND QUASICRITICAL PARAMETERS

We consider at first a case of flutter instability. In this case s* = jO)* i= O. Let us show,
that in the presence of external damping

f3*=P* at e-+O. (4.1)

In fact, in the case of external damping the damping operator in equation (2.2) is D(s) = As.
The characteristic equation (3.1) at f3 = P* has a form

F(S2+ es,P*) = O. (4.2)

We get from equation (4.2)

where x = S2 + es. The power of the first term of the expansion (Xt = 1 and coefficients of
the expansion are to be determined from the equation a20d + all ('[ + a02 = O. Taking
into account the explicit expressions of these coefficients, we obtain 4d +4('[ + 1 = O.
Roots of this equation are ('1(1,2) = -1/2. Hence

sl.2(£) = s* + ...
and the relation (4.1) is valid.

If the coefficient

so the relation

fi* < P* for I: -+ 0, (4.3)

holds. In fact, in this case in the neighbourhood of the point e = 0 we have two simple
branches

(4.4)

From equation (3.1) we get

(4.5)

where x = S2, Y = I:S. As s* jw and w* and all the derivatives in the expressions (4.5)
are real quantities, so one of the branches (4.4) has a positive real part. Therefore the
relation (4.3) is proved.
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Let us come to a case of divergence instability (s", = 0). We suppose that the elastic
system is subjected to two sets of forces given with parameters PI and pz. At some com
bination of these parameters the divergence instability may occur. The characteristic
equation has a form

(4.6)

We show that in the presence of the external damping only, the relation similar to (4.1)
takes place too. From an equation analogous to the equation (4.2) we get

k = 1,2, ....

Therefore

n m

F(sZ +£8, 111*' I1z*) = 8 L L ajk8j~ l£k+ ....
j=O k=O

One of the characteristic exponents does not depend on c:, i.e. 8 1 == O. The calculations give

Hence the power of the first term in the expansion !XI = 1, and the coefficients are to be
determined from the equation aZocl +all = O. So CI = 1 and 8z(£) = -/;+ ... , which
proves the relation (4.1).

In the general case of damping forces a following statement is true: the relation (4.1)

takes place when and only when the coefficient all ¥- 0 and aiiaZO > O. The condition
all = 0 yields an equation of curves where the divergence and flutter instability's critical
surfaces intersect. These curves on the divergence instability's surfaces we call singular.
In the case, when the parameter's space is two-dimensional, we speak of singular points.

Differentiation of the equation (4.6) gives

k = 1,2, ....

Hence
n m

F(sz, ss, 111*' I1z*) = s L L ajk8j-lsk+ ... ,
j=O k=O

and SI == O. The calculations give

of(O, 0, 111*' I1z*)
all = oy

Then

IJ(I = 1,

If all aZO > 0 (the coefficients are real) the relation (4.1) holds.
Now we consider a new function
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For this function at e = 0 the root S = 0 is simple. According to the theorem about implicit
functions, this root may be expanded in power series convergent in some neighbourhood
of the point e = 0:

00

sie) = So+ L akek,
k= 1

It is easy to show that

So = s(O),
1 dks(O)

ak = k! ciT' (4.7)

(5.1)

(5.2)

When damping is sufficiently small, we may take into consideration the first term only.
At a1 > 0 this branch always has a positive real part, and at a1 < 0 has a negative one.
Equation a 1 = 0 gives the singular (points) curves.

5. EQUATION OF THE CRITICAL SURFACE IN A CASE
OF INFINITESIMAL DAMPING

At /3 < P* the equation (3.1) has no multiple roots. An arbitrary root of this equation
may be expanded in power series of the type (4.7). Coefficients of this series obviously may
be expressed by means of partial derivatives of the left part of the equation (3.1). These
derivatives must be taken at e = 0, and they depend on s6 and on parameters of the external
forces. Only the case s6 i= 0 is interesting. From the properties of eigenvalues of boundary
value problem (2.2) it follows, that for a wide class of the damping forces' operators, the
coefficient a1 is rigorously negative at /3 = O. Using continuity considerations, the critical
values of parameters at e --+ 0 are to be determined from equation a1(S6, /31' /32' .. , /3n) = O.
The equation (3.1) yields

( 2 /3 /3 /3 ) - _ cF(s6, 0, /31' /32"'" /3n)/ce
a1So, l' 2"'" n - ~ 2 /3 /3 .(F(so, 0, /31' 2"'" n)/Cs

Putting this coefficient to be equal to zero we obtain

cF(s6, 0, /31' /32"'" /3n)
~ = O.
(e

As s6 are eigenvalues of undamped system, so the equation (5.1) must be supplemented by
corresponding equation. As a result we have

cF(s6, 0, /31' /32"'" fJn) = 0
ae '

Thus the equation of critical flutter surfaces at infinitesimal damping is

R [aF(s2, 0, /31 , /32, ... , /3n)
ae '

(5.3)

where R is a resultant. In general case construction of the resultant of two integer transcen
dental functions is impossible. Numerical solution of this problem does not meet any
complications. In presence of the external damping only we have

aF(s6, /31' /32"'" /3n)
ae

1 of(s6, /31' /32,"" /3n)
2 a(s2)
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and the formula (5.3) becomes

f3 I II

I

+--( ~
~

i

Lim f3*
~~~O

/ '"
.._-~

~~.-I---~rr ...........---
o 2 3 4 5 6 7

~
d22

FIG. 2. Critical value as a function of the ratio of partial damping coefficients.

The equation of critical surfaces is obtained by putting to zero a discriminant of the
characteristic equation

(5.4)

This result coincides with results about the correlation between the critical and quasi
critical parameters in the presence of external damping only obtained earlier.

6. APPLICATION OF THE THEORY TO FINITE-DEGREE-OF-FREEDOM
SYSTEMS

The characteristic equation of an n-degree-of-freedom system III the presence of
dissipative forces is [3J

(6.1 )

Here OJ are the partial natural frequencies, [djkJ and [bjkJ are the matrices-tinite-dimen
sional analogs of operators C- 1D and C - 1B respectively. The matrix analog of the tinite
dimensional operator C- 1A is reduced to the diagonal form.

The statements about the correlation between the critical and quasicritical values,
which has been obtained earlier, may be paraphrased in terms of the expression (6.1). The
simplest form of these statements will be obtained if the dissipation matrix is diagonal.
We discuss only this case.
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Let us consider the flutter instability (s* "# 0, P* "# 0). From the expression (6.1) we
obtain

(6.2)

.. 2 a odi(s;, 0, P.)
a20=b jjcJJ(s.,0,P.)+s* Os '

where cik are algebraic supplements of the corresponding elements in the determinant (6.1).
When the diagonal elements of the dissipation matrix are equal, so f3* = P* at I:: ---+ 0.

This phenomenon was discovered by Bolotin [7]. Let us prove this result using general
considerations. Let djj = dkk = d. Without limiting of generality we can assume d = 1.
As by the condition alo = °so aOI = s.bjjcji = 0. Other coefficients become

1 ocii(S2 °a )s: *, ,p*
a02 = 2s*Ujj 01:: '

(6.3)

_ s: ocii(s;, 0, P*)
a20 - s*uii :1 •uS

It is easy to show that in this case

ocii(s;, 0, P*) = 2 ocii(s;, 0, P*)
DS Df.·

Hence 0(1 = 1, the roots of the equation a2oci+allc l +a02 = °have negative real parts,
and the statement is proved.

If the sum djjcii is not equal to zero, then the coefficient aOI is purely imaginary. The
coefficient a20 is always real, and one of the branches (4.4) has a positive real part. There
fore the relation f3* < P* for I:: ---+ °holds.

We consider separately the case of double partial frequencies. Without limiting the
generality let us assume that 0 1 = O2 = 0 0 = is*. At beginning we examine the behaviour
of the characteristic exponents of the undamped systems when f3 > 0. From the equation
(6.1) for 8 = 0 we get

i1(S2,f3) = I(S2+0J)bik+f30Jbikl = O.

Let us suppose for example that bikbki < 0, bkk = 0. Calculations yield

(6.4)

n

a~o = - 406Il (OJ -06),
iot I
iot 2

a~2 = Ib 12b21 1 Il (OJ- 0 6),
iot I
il' 2
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Hence for arbitrary f3 > 0 one of the characteristic exponents is on the right halfplanc.
Thus P* = O.

Now let us examine the dependence of the characteristic exponents on thc parameter I

for the case P* = O. From equation (6.1) we get

aOI = 0, all = - 206(d l1 +d22 ) n (Oy- 0 6),
j* I
jet 2

a20 = - 406 TI (OJ -06)·
jet I
jet 2

Here IX I = I, and the equation a20d+allc 1+a02 = 0 has roots with negative real parts.
Therefore f3* = P* at c --> O.

Now we come to the case of divergence instability (5* = 0). We present the charac
teristic equation for a system with n degrees of freedom in a form

!J..(52,cS,f3I,#2) = 1(52+0f)<5jk+BSdjk+OJ(f31h)~)+f12h)i»)1 = O. (6.5)

where f31 and #2 are parameters of the external forces. Let us suppose that a divergence
instability of the system is possible, i.e. there exist such quantities PI * and P2* that

!J..(O, 0, PI*, P2*) = O. (6.6)

Otherwise we can write

n

l<5 jk +PI*b)ll+P2*bm TI OJ = O.
j= I

(6.7)

Now we examine the dependence of the roots of the equation (6.5) at f31 = Pl* and
f32 = Pl* on damping parameter e. From the equation (6.5) we obtain

aOk = 0 (k = 0, 1,2, ...),

alO = <5jj d j
(O, 0, PI.,Pl.),

(6.8)

(6.9)

All the coefficients are real. From the first condition (6.8) it follows that the polynomial
(6.5) has a factor 5. Thus 51 == O. The remaining conditions yield a l = I, CI = al t/a20 and

all
52(1:) = --c+ ....

a20

Consequently,ifalla2o > O,solll* = PI*,f3l. = Pl*atc-->O; ifa lla20 < O,solll. < f3t.
or f3l. < Pl*' at c --> O. Singular points are to be determined from the condition all = O.

Let us construct an equation of critical flutter surface for a case of infinitesimal damp
ing. Developing the determinant. we write the equation (6.1) in a form

(6.10)

Unwritten terms have an order of magnitude o(e); the coefficients Pj depend on the external
loads parameters and on the elements of damping matrix [djkJ. When damping is absent
(I: == 0) and at f3 < f3. the equation

( 2) 2n In-l+ 2n-4+ +P - 0gn 5 = Po5 + P25 P45 . . . In - , (6.11)
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has purely imaginary and simple roots, and P2n =1= O. At fJ < /1* each root of the equation
(6.l) is an analytic function of the parameter c. An asymptotic expansion of this function is

s(8) = So +a1f.+ 0(';),

where So = s(O), a l = ds(O)/dc. According to the theorem on implicit functions we obtain
from (6.10)

ds(O)

dE

Putting the coefficient a 1 to zero we get

f~-I(s6) = PIS6n 2+ P3S6n-4+ ... +P2n-3 S6+P2n 1 = O.

As the quantities s6 are the roots of the equation (6.11), so calculations reduce to con
struction of the resultant of two polynomials f~-I and gn' From the polynomials theory
it is known that

PI P3 Ps P2n-l 0 0

l"
0 PI P3 P2n 3 0 0

0 0 PI P2n--S 0 0
RU~-l,gn) = ..... ~ ................................... =

Po P2 P4 P2n-2 P2n 0

} n-I0 Po P2 P2n-4 P2n- 2 0

0 0 Po P2n-6 P2n-4 0
......................................

IPI P3 Ps Pln-l 0 0

Po P2 P4 P2n-- 2 P2n 0

0 PI P3 P2n- 3 P2n-I 0 = 8 2n - 1

0 Po P2 Pln-4 Pln-2 0
............................................

where 8 2n - 1 is a Hurwitz' determinant of the 2n -1 order corresponding to a polynomial
obtained from the polynomial (6.10) by an obvious procedure. Thus the equation of the
critical flutter surface when damping is infinitesimal, has the form 8 2n - 1 = O.

7. EXAMPLE OF A CONTINUOUS DAMPED SYSTEM

Let us consider a problem on stability of a cantilever bar subjected at the free end
to a tangential force P and a dead load Q (Fig. 3). The bar is made of the linear standard
viscoelastic material with the deformation law as follows

Here
r 0 I

L 1 = --+~--,
Eo ot E'l:)

a
L 2 = r-+lat
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x

FIG. 3. Cantilever subjected to follower and dead forces.

(7.1)o

a-stress, {'-strain, t-relaxation time, Eo and Kx)--unrelaxed and relaxed moduli,
respectively. For the investigation of stability the dynamic method [3J is used. Equation
of small vibration of the viscoelastic bar near the equilibrium position is obtained using
the elastic-viscoelastic analogy. The elasticity modulus in equation written for elastic
bar is to substitute by a complex modulus, E* = L2(s)/L t (s) where s is the characteristic
exponent As a result we get the following nonself-adjoint boundary value problem

d4 W d2 W
(1 + I1S )-<})'4 + (0: + f3)(1 +'Yl1s)d~2- + (S2 +YI1 S3 )W

'> C;

(7.2)

Here W(~)---vibration mode,

x PI2 QL2
t_ a 0:----" -I' P = E i' - E_l'

cx::' '.......

}-inertia moment of the cross section, I-length, m-mass per length unit, Y= ECfJ/Eo,
o S 'Y < 1. The parameter 11 characterizes the energy dissipation. Putting }' = 0 we obtain
the Voigt material. The parameters r:t. and f3 are positive if the corresponding forces pro
duce compression of the bar. Further a case 0: > 0 and f3 > 0 is considered.

A solution of the equation (7.1) has a form

4

Wm = L C j eAj
{,

i~ 1
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where )'j (j = 1,2.3.4) are roots of the equation

(l +1JS)A4 +(Ct+ [3)(1 +Y1Js)),z+(SZ + Y1JS 3) = O. (7.3)

Satisfying the boundary conditions (7.2) a set of linear algebraic equations for Cj is
obtained. Condition of existence of nontrivial solution yields

=0

(..1.i +IjJA 1) ei
'1 (Ai+IjJA z)eA2 (Aj+IjJA3)eAJ ().i+ 1jJ..1.4 ) eA4

ljJ=rx
l

+ Y1Js .
1+1Js

The roots of the equation (7.3) are

1. 1 = (1 + 1Js) - t {- Ct; [3 (1 + Y1Js) + [(Ct :[3)z (1 + Y1Js)Z _ (1 + 1Js)(SZ + Y1JS3)T}t

I. z = i(1 + 1Js)-tt; [3 (1 + Y1Jsl+ [(Ct :[3)Z (1 + Y1Js)z - (1 + 1Js)(SZ + Y1JS3 )T} t

)'3 = -At, 1.4 = -..1.z ·

Expanding the determinant (7.4) we obtain the following characteristic equation:

F(..1. 1 , Az, 1jJ) = ),i + ),~ + )'1 Az(Ai + ).~) ShA l shAz - 21.i A~ ch..1. 1 chAz

+ IjJ[Ai + ),~ - (),i + ),D ChA l ch)·z + 2..1. 1Az sh..1. 1 sh..1. z] = O.

Another form of this equation is

1 -+-Y1Js z z
F(s,1J.IX,[3) =----(Ct+[3) -2s (1+ChA 1 ch..1.z)

1+1JS

(
1+ "1JS ) t+ s(rx - f3) r - Sh)'l shAz
1+ 1JS

1+ Y1JS .,
-Ct(:x+{j)---(1-ch/'l chAz) = O.

1+ 1JS

Let us consider divergence instability. Setting in the equation (7.6) S = 0 yields

x cos J(Ct + f$l+ [3 = o.

(7.4)

(7.5)

(7.6)

(7.7)

On the Ct, [3-plane this equation determines boundaries of the divergence quasistability
region. As was mentioned above, the singular points divide this line to stability and in
stability segments. Singular points are to satisfy the equation
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From the equation (7.6) we obtain

fJ* + x* cos ,/(x* + fJ*) -. x*J(x* + IJ*) sin y/(x*+ 13*) :0 O.

As:x* and P* satisfy the equation (7.7), we get from equation (7.S):

x*+/3*=1[2

17.1'1)

This straight line on the CI., fJ-plane intersects the curve (7.7) in a single point IX" 0.0 f3* = n2
/2).

Thus a point (x* = fJ* = 7[z/2) is a single singular point on the boundary of divergence
instability. Using considerations from Sect. 2 and 3 we conclude, that the segment of this
line adjoining to the x-axis is a stability boundary. The rest of this line belongs to the
instability region.

Let us consider the flutter instability. From equation (7.5) we find that

(7.10)

(7.12)

and
?F ?)'j

a10 = I ~ ,~- = 0, (711 )
j = 1. Z (A j (8

according to condition. Here a zero above the letters denotes that these expressions are
taken at '1 = 0,8 = 8*, X =:X*, 1/ = 1]*. As all the roots of the equation (7.3) are different

P.!.i 2s* ?Aj

as 4lr+2(a~'+ P*)A j ' t'll

D)'j t'Aj(l-yj).t.
-- =-- ------ (f = I, 2).
t''1 (18 2 .

Taking into account relations (7.12) we may factor out of the brackets the complex
factor and consider the sums as a scalar product of appropriate vectors in three-dimen
sional space. This consideration yields that the quantity ao 1 #- 0 and that it is purely
imaginary at arbitrary 0 ::; )I < I and s* #- O. Hence x* < :X* or f3* < P* at '1 -> 0 and at
arbitrary )I.

The equation of the boundary of flutter instability at '1 -> 0 is to be obtained by the
elimination of w from the following set of equations [see equation (5.2) alsoJ :

Il(rx + f3) + [ri(xz+ rxf3 +2wz)- w(rx _ mdJ [(x; f3) Z+ wz]-l

[(
x+fJ)Z z]-1 1 Z Zxchr 1 cosrz - .-2'- +10 [r2(X +rxfJ+2w )

+w( rx - {J)riJ ch r1 sin rZ- 1w(rx - fJ) sh r 1 sin rZ

+rx(rx+f3)chr 1 cosrz=O (7.13)

f3(rx+ f3)+2w z -w(rx-fJ) sh rl sin rz + [rx(rx + f3)+2wzJ ch rl cos rz = 0

d = _x-1 fJ
+ [(~!-~r +wzT

d = :;~+[(rx;Er+wzr·
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8. METHOD OF NUMERICAL ANALYSIS

The behaviour of the characteristic exponents when one of the parameters varies has
been investigated numerically. Solution of the transcendental equations has been reduced
to a Cauchy's problem for a set of two ordinary differential equations of the first order.
The general idea is as follows. Setting in equation (5.5) s = ~ + it/J and dividing real and
imaginary parts yields:

Ff(~' t/J. I}, CI., [3) = 0

FR(~' t/J, '1, IY.. {l) = O.

After the differentiation of the equations (8.1) with respect to f3 we obtain

(8.1)

(lFR

f!{~ .

(8.2)

(8.3)

Transforming this set of equations to the normal form (this procedure is always admissible
as 1] i= 0) we get the following Cauchy problem:

OFf oFR OFf oFR---------

a{~ ot/J at/J 0[3
.I(Ff , FR )

(8.3)

where

OFf aFR OFf oFR------
dt/J o~ ot/J a[3 o~

d[3 - .I(Ff .FR)

~i[3o) = ~jO

t/Ji[3o) = t/JjO
(8.4)

.I(F F) = OFf oFR _ OFf oFR

f, R ot/J o~ o~ ot/J

The Cauchy problem has been solved numerically by a digital computer using
Runge-Kutta's procedure. Partial derivatives in the equation (8.3) were substituted by
finite difference expressions. Initial dates were computed by the gradient method. Instead
of equation (7.6) the following equation was considered:

<I>(~, t/J. 1]. IY.. [3) = IF(s, 1], IY., [3)1 2 = O. (8.5)

Successive approximations for roots of the equation (8.5) were calculated using a formula

Zk + 1 = Zk - Ak grad <I>(Zk' 1], IY., [3)

where vector Zk = {~ko t/Jd and

(8.6)
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Computation of the boundaries of the instability regions on the ex, IJ-plane at different
values of 11 and y were performed by the same method. The critical value [3* of the para
meter at fixed values of the parameters IX, y and 'l was determined as a minimal root of the
equation (8.5) at ~ = O. Evaluation of the boundaries of quasistability regions and stability
regions at 11 ~ 0 were made by similar procedure. Calculations were realized by computer
BESM-2M.

9. DISCUSSION OF RESULTS

The instability regions on IX, If-plane for different values of damping parameters ]i

and 'l are presented on Figs. 4-7. Here by broken lines the boundaries of quasistability
regions corresponding to the case 'l == 0 are plotted.

Let us discuss in detail Fig. 4 corresponding to the case y = 0 (the bar is made of
Voigt's material). Both the stability and quasistabitity regions are limited by lines of two
types: the lines intersection of which is accompanied by vibrational instability, and the
lines associated with unvibrational instability. The Fig. 4 shows that the introduction of
infinitesimal damping (11 --+ 0) transforms a considerable part of the yuasistability region
in the instability region. For example, when (J. = 0 (the bar is subjected to the follower

I
'2

o

Flutter instability

Divergence
instability

FIG. 4. Instability and quasistability regions at I' = 0 and at different values of 1/.
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FIG. 7. The same at y = 0·8.

force only) the critical parameter [3* = 10·94 is approximately twice less than quasi
critical value P* = 20·05. This fact has been mentioned earlier too [3, 6, 11]. When damping
parameter fJ increases, the stability region is gradually widening. But even at fJ = 0·20
a considerable part of the quasistability regions belongs in fact to the instability region.

There is an interesting fact in the presence of a singular point at ex = [3 = 1[2/2. At
this point the vibrational instability curves corresponding to various values of IJ and the
unvibrational instability curve intersect. Another interesting fact is that the stability and
quasistability regions are unconvex (it is known [20J that stability regions for elastic
systems subjected to conservative forces are convex). Unconvexity of stability region of
the panel flutter problem has been mentioned by Bolotin [3].

In connection with the question about the unconvexity it is appropriate to remember
a phenomenon ofthe jump ofthe critical force discovered by Dzhanelidze [17]. Dzhanelidze
has considered a problem of the stability of a cantilever with a concentrated mass on the
end compressed by a dead and follower forces. Damping was not taken into acCount.
Plotting the sum P +Q corresponding to the boundary of the quasistability region against
to ratio P/Q, Dzhanelidze has found a jump at P/Q = 1. This jump corresponds to the
transition from the static instability line to the vibrational instability line. The jump
phenomenon in the double pendulum problem was discussed by Herrmann and
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Bungay [21]. An analogous result was obtained in a case of the distributed mass (see
Fig. 8). Some authors state that this fact is a consequence of the oversimplification of the
problem, and they suppose that the jump will be eliminated when damping is introduced.
In fact in presence of damping the jump of the rJ. + /3, /31rJ. plane vanishes (Fig. 8). But the
real cause of the jump is unconvexity of the stability region. The unconvexity remains in
the presence of damping (Figs. 4-7). Therefore, replacing the parameters rJ., f3 by its inde
pendent combination we can find out the jump phenomenon too. The jump on rJ. + fJ,
fJlrJ. plane disappears because of the coincidence of two points: the contact point of the
line rJ. = f3 with the static instability curve and the singular point.

,..---f-- 1']=0
1'] =0.15 -------- f-_ ... _.

~~
r--

1']=0.20

2-f,.---
./

I

)
/ /. ./

1']~0 1']=0.05 1']=0.10

V
!

I
'2

a+/3

2

a 2 3 4 5 6

/3-
a

FIG. 8. Summary critical force as a function of the ratio of follower and dead forces.

The diagrams presented on the Figs. 4-7 show a gradual alteration of the stability
regions when the parameter y increases from zero to y = 0·8. The topology of the stability
regions does not vary. But the increasing of y causes a weaker dependence of the curve
of the vibrational instability on the quantity 11. Considering partial damping coefficients
corresponding to the two first natural modes we obtain a qualitative explanation of this
phenomenon. Rigorously, a concept of partial damping coefficients for a dissipatively
bounded system is conventional. We shall express these coefficients through the power of
damping forces when displacements coincide with natural modes of an elastic bar and the
frequencies of motion coincide with natural frequencies. Thus

where ER(Wk) and Eiwk) are real and imaginary parts of the complex modulus at the
natural frequency Wk'

The ratio of two first partial damping coefficients d22 /d 11 is plotted on Fig. 9 against
the parameters y and 11. The diagram shows that when the parameter y increases, the ratio
d22 ld ll increases too. Using an analogy with finite-degree-of-freedom systems (see for
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30,-------,-----r----,

0.8o 0.4

Y

FIG. 9. Partial damping coefficient as functions of the value }'.

example Fig. 2) we can suppose that the increasing of y causes the decreasing of the critical
parameters. Results of direct computations are in agreement with this statement.

A next question to be discussed is the following one. Intuitive considerations [7J let
us suppose that in spite ofrigorous theory the quasicritical parameters have some physical
and engineering sense. When damping is sufficiently small, the exceeding of the quasi
critical value results in some variation of the behaviour ofthe physical system. To investigate
this phenomenon, the properties of the characteristic exponents will be studied in the case
of sufficiently small damping.

The real and imaginary parts of the two first characteristic exponents SI' S2as functions
of the follower force parameter fJ at IX = 0, y = 0 and at different values of'f/ are presented
in Fig. 10. For comparison on the same diagram the characteristic exponents calculated
at 11 == 0 are presented. When 'f/ is very small (for example when 11 = 0-001) the character
istic exponents differ a little from the calculated for the case '1 == O. But alteration of the
sign of the real part Re S1 occurs at fJ < p*. It is essentially, that when '1 is very small the
increment Re SI is sufficiently small in the range fJ* < f3 < p*. The rapid growing of the
increment begins only when f3 > B*. Hence, although at very small '1 the exceeding of the
critical value f3* leads to the instability, but the sharp growing begins only, when exceeding
of the quasicritical value p* occurs. On the Fig. 11 the increment Re s1 is plotted against fJ
on a large scale ('1 = 0,001). An analogous diagram for a two-degrees-of-freedom system
was presented in the paper by Herrmann and Jong [9].

10. CONCLUDING REMARKS

In this paper a question about relations between stability and quasistability regions
was considered both from a general point of view and on numerical examples. A method
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of expansion in fractional powers of parameters is applied. A principal conclusion is:
for real laws of damping a considerable part of quasistability region belongs to the in
stability region. From this rigorous point of view the majority of papers dealing with
stability of nonconservative systems (including panel flutter) need to be reconsidered.
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Only in a case of very small damping may we expect that for mutual parts of the stability
and quasistability regions a "quiet" flutter is typical and for the vibrational instability
region (in proper sense)-a "violent" flutter. It is a hypothesis that has to be confirmed
by solution of nonlinear problems and by experiments.
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Pe3IOMe~PaccMaTpIlBaeTC51 Bonpoc 0 COOTHOWeHl-1J.l 06JlaCTeH yCTOH'II1BOCTI1 11 KBa3I1ycTOil'lI1BOCTI1 )l.JUI
ynpyrl1x II B513Koynpyrl1x CJ.lCTeM, HarpY)l(eHHblX HeKoHcepBaTIlBHblMIl CIlJ1aMI1. Ha OCHOBe MeT0ll.a
pa3nO)l(eHIl51 no AP06HblM CTeneH51M napaMeTpoB cTporo AOKa3aHbl yTBep)l(AeHIIII, KOTopble paHee
BblCKa3blBaJlllCb B pllAe pa60T Ha OCHOBaHll1l nonyHHTyHTHBHblX C006pa)l(eHHH, apryMeHTallHIl no
aHaJ10rHIl Il HenOJ1HOH HHAYKllI1H. B nepBOH 'laCTI1 CTaTbH npII 06WHX opeLln0J10)l(eHHIIX ,llOKa3blBaeTclI
PIlLl yTBep)l(LleHHH KaK ,UJ111 pacnpeAeJleHHblX TaK J.l AJ111 1I,I1CKpeTHbix CIlCTeM. nOKa3blBaeTCII, 'ITO )lJlll
peaJlbHblX 3aKOHOB ueMnllnlpOBaHHlI3Ha'lHTenbHall 'laCTb 06naCTIl KBa3HycToil'lHBOCTIl B ,UeilCTBHTeJ1bHOCTJ.l
npHHaLlne)l(HT 06J1aCHI HeycToil'l»BocTH. C :noll TO'lKI1 3peHI111 nOAaBJllllOllJce 60JlbWHHCTBO pa60T no
YCTOH'IIlBOCTH HeKoHccpBaTHBHblX ynpyrl1x C»CTeM (BKJ1IO'lall pa60Tbi no naHeJlbHoMY QlJ1aTTepy) HY)l(AaeTClI
B nepecMoTpe. LlJlIl I1nJ1locrpaumt 06WHX yTBep)l()l.eHl1il BO BTOpOH 'laCTH CTaTbH npHBoAHTClI 'lHCJ1eHHOe
I1CCJleXl;OBaHl1e YCTOH'IHBOCTH KOHconbHoro CTep)l(HII In J1I-1HeilHOrO CTaHL\apTHOro B1I3Ko-ynpyroro
MaTepllaJ1a, Harpy)l(eHHOrO cJle,UlIweil Il MepTBoil CHnaMJ.l. 06cY)l()l.aCTCII PJlXl; lIBJ1eHJ.llt np"cylUlx
HCKoHcepBaTHBHblM BJl3Ko-ynpyn{M CHCTeMaM.


